Cucka, P. \& Small, R. W. H. (1954). Acta Cryst. 7, Pasternak, R. A., Katz, L. \& Corey, R. B. (1954). 199. Acta Cryst. 7, 225.
Dejace, J. (1955). Acta Cryst. 8, 851.
Groth, P. (1906-19). Chemische Krystallographie. Leipzig: Engelmann.
Kimura, M., Aoki, M. \& Kurita, Y. (1954). Bull. Chem. Soc., Japan, 27, 360.
Pasternak, R. A. (1953). Acta Cryst. 6, 808.

Romers, C. (1953). Acta Cryst. 6, 429.
Senti, F. \& Harker, D. (1940). J. Amer. Chem. Soc. 62, 2008.
Turner, J. D. \& Lingafelter, E. C. (1955). Acta Cryst. 8, 551.
Wright, W. B. \& King, G. S. D. (1954). Acta Cryst. 7, 283.

Acta Cryst. (1956). 9, 991

# The Crystal Structure of Magnesium Phosphite Hexahydrate, $\mathbf{M g H P O}_{\mathbf{3}} . \mathbf{6} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ 

By D. E. C. Corbridge<br>Research Department, Albright and Wilson Limited, Oldbury, Birmingham, England

(Received 4 June 1956)


#### Abstract

The crystal structure of magnesium phosphite hexahydrate, $\mathrm{MgHPO}_{3} .6 \mathrm{H}_{2} \mathrm{O}$, has been determined by Fourier methods. The lattice is rhombohedral, with unit-cell dimensions $a_{R}=5.96 \AA, \alpha=$ $96^{\circ} 24^{\prime}$. The space group is $R 3$ and the $\mathrm{Mg}, \mathrm{P}$ and H atoms lie on the unique axis. The structure is built from discrete tetrahedral $\left[\mathrm{HPO}_{3}\right]^{2-}$ ions and octahedral $\mathrm{Mg}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ groups, which are linked together in three dimensions by a continuous system of hydrogen bonds. The crystals are isomorphous with those of magnesium sulphite hexahydrate, $\mathrm{MgSO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, which probably contain an isostructural arrangement.


## Introduction

Phosphorous acid, $\mathrm{H}_{3} \mathrm{PO}_{3}$, is dibasic, and its crystalline salts are usually assumed to contain discrete tetrahedral $\left[\mathrm{HPO}_{3}\right]^{2-}$ ions in which the hydrogen atom is linked directly to phosphorus. Evidence for this configuration is provided by infra-red spectra (Corbridge \& Lowe, 1954) and Raman spectra (Simon \& Fehér, 1937), but no detailed X-ray studies of crystalline phosphites have been reported. The existence of approximately tetrahedral $\left[\mathrm{H}_{2} \mathrm{PO}_{2}\right]^{-}$ions in hypophosphites has been demonstrated in the crystal structures of ammonium hypophosphite $\left(\mathrm{NH}_{4}\right) \mathrm{H}_{2} \mathrm{PO}_{2}$ (Zachariasen \& Mooney, 1934) and magnesium hypophosphite $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ (Pedrazuela, Garcia-Blanco \& Rivoir, 1953).

## Unit cell and space group

Small, hemimorphic, trigonal pyramidal crystals were obtained by evaporation of an aqueous solution of the salt. The dimensions of the hexagonal unit cell, determined from rotation photographs, were

$$
[a]=8 \cdot 88,[c]=9 \cdot 10 \AA
$$

The corresponding rhombohedral constants are

$$
\left[a_{R}\right]=5 \cdot 96 \AA, \alpha=96^{\circ} 24^{\prime}
$$

The density, determined by flotation, was 1.708 g.cm. ${ }^{-3}$, while that calculated for the hexagonal cell,
assuming 3 units of $\mathrm{MgHPO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, was $1 \cdot 703$ g.cm. ${ }^{-3}$.

The symmetry of [c]-axis Weissenberg and oscillation photographs indicated a rhombohedral lattice. Indexing of zero and lst layer [ $c]$ - and [ $a$ ]-axis Weissenberg photographs revealed that reflexions were absent for $-h+k+l=3 n$, and the intensities of spots on the [c]-axis zero-layer-line photograph were such that $I_{h k i 0} \neq I_{k \dot{k} i 0}$. The crystals were found to be strongly pyroelectric and space group $R 3$ was adopted.

## Intensity data

Experimental intensity data were obtained from zero-layer-line [c]- and [a]-axis Weissenberg photographs taken with $\mathrm{Cu} K \alpha$ radiation. A multiple-film technique employing six films for each layer line was used. The intensities were estimated visually, and Lorentz and polarization corrections were made in the usual way. Absorption effects were minimized by using small equant crystals $\sim 0.3 \mathrm{~mm}$. The structure amplitudes were put on an absolute scale by comparison with the calculated values during later stages of the analysis. A total of 180 different spots were estimated, giving a final list of 74 non-equivalent $\{h k i 0\}$ - and $\{0 k i l\}$-type reflexions.

## Structure determination

In space group $R 3$ the special and general positions in the hexagonal cell are:

$$
\begin{aligned}
& n=3(a) 0,0, z ; \frac{1}{3}, \frac{2}{3}, \frac{2}{3}+z ; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}+z . \\
& n=9(b) x, y, z ; \bar{y}, x-y, z ; y-x, \bar{x}, z ; \\
& \quad \frac{1}{3}+x, \frac{2}{3}+y, \frac{2}{3}+z ; \frac{1}{3}-y, \frac{2}{3}+(x-y), \frac{2}{3}+z ; \\
& \\
& \quad \frac{1}{3}+(y-x), \frac{2}{3}-x, \frac{2}{3}+z ; \frac{2}{3}+x, \frac{1}{3}+y, \frac{1}{3}+z ; \\
& \\
& \quad \frac{2}{3}-y, \frac{1}{3}+(x-y), \frac{1}{3}+z ; \frac{2}{3}+(y-x), \frac{1}{3}-x, \frac{1}{3}+z .
\end{aligned}
$$

Since the hexagonal cell contains three each of Mg , P and H atoms, they must occupy three sets of positions (a). Such an arrangement would be consistent with a tetrahedral $\mathrm{HPO}_{3}$ ion lying with the $\mathrm{P}-\mathrm{H}$ linkage coincident with the threefold axis and with the remaining oxygens disposed with trigonal symmetry in positions (b). At this stage it was also assumed that the 18 water molecules in the cell would occupy two sets of positions (b), which would enable them to be grouped octahedrally round the magnesium atoms.

A Patterson synthesis for the [ $c]$-axis projection is shown in Fig. I. Structure-factor calculations were


Fig. 1. Patterson synthesis, [c] projection.
carried out commencing with the water molecules in positions $A$ and $B$ and the oxygen atom in one of these. The coordinates were refined by trial-and-error work in conjunction with Fourier syntheses and the final electron density map is shown in Fig. 2(a). At this
stage the agreement factor $R=\Sigma\left|F_{o}\right|-\left|F_{c}\right| \div \Sigma\left|F_{o}\right|$ was $13.5 \%$ and could not be reduced further.

Refinement of the ( $x, y$ ) parameters was then effected by two difference syntheses using the ( $F_{0}-F_{c}$ ) values, and the final agreement factor for this projection was $R=7.6 \%$.

Interatomic distances of $\mathrm{P}-\mathrm{O} \sim 1.51 ~ \AA$, and $\mathrm{Mg}-\mathrm{W} \sim 2.05 \AA$ were assumed and an approximate set of $z$ parameters was derived from packing considerations. The $\mathrm{Mg}^{2+}$ ion was placed at $z=0$ and trial-and-error work was carried out in conjunction with Fourier syntheses. The final synthesis for the [a] projection is shown in Fig. 2(b). Further refinement of the $z$ parameters was obtained from two difference syntheses with the $\{0 k i l\}$ terms, and the agreement factor reduced from $R=22.5 \%$ to $R=16.3 \%$. A significant indication of the hydrogen position was not obtained.

The final atomic coordinates from the two projections are listed in Table 1. The fact that $R_{\text {hki0 }}$ reduced

Table 1. Atomic coordinates

|  | $x$ | $y$ | $z$ |
| :--- | :---: | :---: | :---: |
| Mg | 0 | 0 | 0 |
| P | 0 | 0 | 0.488 |
| H | 0 | 0 | $\sim 0.65$ |
| O | 0.130 | 0.180 | 0.435 |
| $\mathrm{~W}_{1}$ | 0.010 | 0.205 | 0.882 |
| $\mathrm{~W}_{2}$ | 0.183 | 0.198 | 0.140 |

to about half the value of $R_{0 k i l}$ is possibly connected with the presence of both the phosphorus and magnesium atoms at the origin in the former projection. The calculated bond lengths are probably accurate to within about $\pm 0.05 \AA$, taking into consideration the shifts produced by the difference syntheses and the sensitivity of $R_{\text {hki0 }}$ and $R_{0 k i l}$ to further coordinate changes. Scattering factors for $\mathrm{Mg}^{2+}, \mathrm{O}^{-}$and P were obtained from the International Tables and a temperature factor of $B=0.5 \AA^{2}$ was found to give the best structure-factor agreement.


Fig. 2. (a) Electron density, [c]-axis projection. (b) Electron density, $[a]$-axis projection. Contours at arbitrary intervals, with lowest level approximately $1 \cdot 5$ e. $\AA^{-2}$.

Table 2. Observed and calculated structure amplitudes

| hkio | $\boldsymbol{F}_{o}$ | $F_{c}$ | $\alpha\left({ }^{\circ}\right.$ ) | 0kil | $F_{o}$ | $F_{c}$ | $\alpha\left({ }^{\circ}\right)$ | 0kil | $F_{0}$ | $F_{c}$ | $\alpha\left({ }^{\circ}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3030 | 37 | 44 | 73.5 | 0221 | 26 | 19 | 102.2 | 0111 | 22 | 19 | $266 \cdot 4$ |
| 6060 | 77 | 77 | 359.5 | 0551 | 43 | 36 | 16.8 | 0441 | 33 | 35 | 61.9 |
| 9090 | 36 | 31 | 31.2 | 0112 | 79 | 91 | 337.6 | 0771 | 11 | 16 | $240 \cdot 1$ |
| 1120 | 62 | 73 | 353.7 | 0442 | 33 | 31 | $330 \cdot 0$ | 0222 | 71 | 71 | $347 \cdot 7$ |
| 4150 | 79 | 86 | $358 \cdot 6$ | 0772 | 37 | 37 | $6 \cdot 1$ | 0552 | 45 | 47 | $354 \cdot 4$ |
| 7180 | 25 | 24 | $35 \cdot 7$ | 0003 | 99 | 115 | 159.7 | 0882 | 24 | 24 | $351 \cdot 4$ |
| 2240 | 32 | 29 | $266 \cdot 4$ | 0333 | 44 | 37 | $14 \cdot 7$ | 0333 | 16 | 33 | $97 \cdot 8$ |
| 5270 | 59 | 57 | $354 \cdot 2$ | 0663 | 35 | 32 | 163.5 | 0663 | 26 | 26 | 174.7 |
| 8,2,10,0 | 12 | 13 | $2 \cdot 6$ | 0224 | 51 | 50 | 1.7 | 0993 | 14 | 19 | 134.4 |
| 3360 | 31 | 29 | $341 \cdot 6$ | 0554 | 28 | 25 | 235.0 | 0114 | 41 | 37 | $82 \cdot 4$ |
| 6390 | 28 | 29 | 336.0 | 0884 | 31 | 31 | 29.7 | 0444 | 40 | 36 | $320 \cdot 2$ |
| 1450 | 63 | 65 | 345.8 | 0115 | 35 | 23 | 119.6 | 0774 | 30 | 32 | $9 \cdot 3$ |
| 4480 | 29 | 29 | 13.0 | 0445 | 8 | 10 | 214.6 | 0225 | 22 | 5 | $80 \cdot 6$ |
| 7,4,11,0 | 21 | 17 | 342-1 | 0775 | 12 | 13 | 114.8 | 0555 | 28 | 31 | $155 \cdot 2$ |
| 2570 | 33 | 32 | 58.2 | 0006 | 45 | 37 | 310.0 | 0885 | 6 | 12 | $74 \cdot 2$ |
| 5,5,10,0 | 51 | 48 | $348 \cdot 1$ | 0336 | 31 | 32 | 12.2 | 0336 | 48 | 53 | $352 \cdot 2$ |
| 3690 | 26 | 26 | $45 \cdot 5$ | 0666 | 34 | 33 | $335 \cdot 3$ | 0666 | 28 | 25 | 349.9 |
| 1780 | 14 | 9 | 31.0 | 0227 | 11 | 5 | $225 \cdot 0$ | 0117 | 47 | 38 | 351.0 |
| 4,7,11,0 | 27 | 28 | $333 \cdot 4$ | 0557 | 34 | 34 | 39.2 | 0447 | 29 | 13 | $276 \cdot 5$ |
| 2,8,10,0 | 25 | 23 | 0.8 | 0118 | 37 | 35 | $7 \cdot 3$ | 0777 | 6 | 8 | $132 \cdot 1$ |
|  |  |  |  | 0448 | 38 | 48 | 8.0 | 0228 | 31 | 20 | 348.5 |
|  |  |  |  | 0778 | 20 | 26 | 314.5 | 0558 | 45 | 51 | 336.9 |
|  |  |  |  | 0009 | 34 | 35 | $21 \cdot 1$ | 0339 | 23 | 9 | 183.7 |
|  |  |  |  | 0339 | 15 | 12 | 181.4 | 0669 | 13 | 8 | 31.8 |
|  |  |  |  | 0669 | 19 | 18 | 56.0 | 0,1,1,10 | 12 | 22 | 313.4 |
|  |  |  |  | 0,2,2,10 | 27 | 28 | $350 \cdot 2$ | 0,4,4,10 | 19 | 17 | $13 \cdot 1$ |
|  |  |  |  | 0,5,5,10 | 14 | 22 | $331 \cdot 0$ | 0,2,2,11 | 16 | 11 | $42 \cdot 9$ |

## Discussion of structure

The phosphite ion is tetrahedral and has threefold symmetry about the P-H bond direction, which is coincident with a threefold symmetry axis in the unit cell. Diagrams of the structure are shown in Figs. 3 and 4.

The experimental P-O distance of $1.51 \AA$ lies close to values found in related oxy ions, e.g. $1 \cdot 51 \AA$ in $\mathrm{NaHPO} \mathrm{NH}_{2}$ (Hobbs, Corbridge \& Raistrick, 1953), $1.51 \AA$ in $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{2}$ (Zachariasen \& Mooney, 1934), $1 \cdot 52 \AA$ in $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}($ Pedrazuela et al., 1953), $1 \cdot 54 \AA$


Fig. 3. Magnesium phosphite hexahydrate structure, $[c]$-axis projection. Numerals represent $z$ coordinates.
in $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (Bacon \& Pease, 1953), $1 \cdot 54 \AA$ (average) in $\mathrm{CaHPO}_{4}$ (MacLennan \& Beevers, 1955), $1.52 \AA$ (average) in $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \mathrm{H}_{2} \mathrm{O}$. (MacLennan \& Beevers, 1956).


Fig. 4. Atomic arrangement round the threefold axis, viewed parallel to [a]. All distances in Angström units and angles in degrees.

The $\mathrm{Mg}^{2+}$ cations are coordinated octahedrally by the six water molecules at a mean distance of $2 \cdot 10 \AA$. This may be compared with the sum of Pauling ionic radii $(2.05 \AA)$ and the octahedral values 2.01 and $2.07 \AA$ found in $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ (Pedrazuela et al., 1953) and $2.04 \AA$ in $\mathrm{Mg}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}$ (Broomhead \& Nicol, 1948).


Fig. 5. Probable hydrogen bonding scheme. Broken lines represent contacts between water molecules in the same octahedral grouping and full lines correspond to broken lines in Figs. 3 and 4. All distances in Ångström units.

Several close water-oxygen and water-water contacts are made in the structure and the environments of these molecules are shown in Fig. 5. If the close water-water contacts in the same octahedral grouping are ignored, the hydrogen bond system is probably as indicated. The observed distances range from $2 \cdot 65$ to $2.86 \AA$ and probably represent 'long' hydrogen bonds, which link the $\left[\mathrm{HPO}_{3}\right]^{2-}$ and $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ groups in a continuous three-dimensional network.

The close coordination (i.e. at less than about $3 \cdot 3 \AA$ ) of water molecules by more groups than are apparently required by the tetrahedral charge rule occurs, for example, in $\mathrm{BaS}_{4} \mathrm{O}_{6} .2 \mathrm{H}_{2} \mathrm{O}$ (Foss, Furberg \& Zachariasen, 1954), and $\mathrm{LiClO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (West, 1934), and may be found in other hydrate structures, particularly those with octahedral coordination groups.
$\mathrm{W}_{2}$ is coordinated tetrahedrally by $\mathrm{Mg}, \mathrm{W}_{1}$ and two oxygen atoms (Fig. 5(a)), while the configuration of $\mathrm{Mg}, \mathrm{W}_{2}$ and O round $\mathrm{W}_{1}$ is nearer that of a planar trigonal arrangement (Fig. 5(b)). Assuming $\mathrm{P}-\mathrm{H} \sim 1 \cdot 47$ $\AA$, the calculated $\mathrm{H}-\mathrm{W}_{1}$ distance is $2.76 \AA$, and this hydrogen cannot therefore be considered as taking part in hydrogen bond formation. Each oxygen atom makes three contacts disposed approximately tetrahedrally to neighbouring water molecules (Fig. 5(c)).

## Isomorphism

During the investigation it was noticed that magnesium phosphite hexahydrate crystals were isomorphous with those of magnesium sulphite hexahydrate. Earlier work (Klasens, Perdok \& Terpstra, 1936) has shown this latter salt to be rhombohedral with $[a]=8.82 \AA,[c]=9.05 \AA$, space group $R 3$, and with a unit cell content of three molecules of $\mathrm{MgSO}_{3} .6 \mathrm{H}_{2} \mathrm{O}$.

Although the structure of this salt was not worked out, a general packing scheme similar to that found in magnesium phosphite was postulated. The trigonal
pyramidal configuration of the sulphite ion has been demonstrated in the crystal structure of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (Zachariasen \& Buckley, 1931).

Powder photographs were taken to confirm the isomorphism, and a very similar distribution of intensities in the two salts was revealed. The hexahydrates of magnesium phosphite and magnesium sulphite presumably contain isostructural arrangements with the sulphite and phosphite ions lying in corresponding positions round the trigonal axes.

Thanks are due to Mrs A. L. Standing for assistance with the calculations and to Mr F. R. Tromans for help in obtaining the photographs.

## References

Bacon, G. E. \& Peasf, R. S. (1953). Proc. Roy. Soc. A, 220, 397.
Broomhead, J. M. \& Nicol, A. D. I. (1948). Acta Cryst. 1, 88.
Corbridge, D. E. C. \& Lowe, E. J. (1954). J. Chem. Soc. pp. 493, 4555.
Foss, O., Furberg, S. \& Zachariasen, H. (1954). Acta Chem. Scand. 8, 459.
Hobbs, E., Corbridge, D. E. C. \& Raistrick, B. (1953). Acta Cryst. 6, 621.
Klasens, H. A., Perdok, W. G. \& Terpstra, P. (1936). Z. Kristallogr. 94, 1.

MacLennan, G. \& Beevers, C. A. (1955). Acta Cryst. 8, 579.
MacLennan, G. \& Beevers, C. A. (1956). Acta Cryst. 9, 187.
Pedrazuela, A. R., Garcia-Blanco, S. \& Rivoir, L. (1953). An. Soc. esp. Fis. Quim. 49, 255.

Stmon, A. \& Fehér, F. (1937). Z. anorg. Chem. 230, 289.

West, J. (1934). Z. Kristallogr. 88, 198.
Zachariasen, W. H. \& Buckley, H. E. (1931). Phys. Rev. 37, 1295.
Zachariasen, W. H. \& Mooney, R. C. L. (1934). J. Chem. Phys. 2, 34.

